Proteasome-mediated CCAAT/enhancer-binding protein δ (C/EBPδ) degradation is ubiquitin-independent

نویسندگان

  • Shanggen ZHOU
  • James W. DEWILLE
چکیده

C/EBPδ (CCAAT/enhancer-binding protein δ) is a member of the C/EBP family of nuclear proteins that function in the control of cell growth, survival, differentiation and apoptosis. We previously demonstrated that C/EBPδ gene transcription is highly induced in G0 growth-arrested mammary epithelial cells but the C/EBPδ protein exhibits a t1⁄2 of only ∼120 min. The goal of the present study was to investigate the role of C/EBPδ modification by ubiquitin and C/EBPδ proteasome-mediated degradation. Structural and mutational analyses demonstrate that an intact leucine zipper is required for C/EBPδ ubiquitination; however, the leucine zipper does not provide lysine residues for ubiquitin conjugation. C/EBPδ ubiquitination is not required for proteasome-mediated C/EBPδ degradation and the presence of ubiquitin does not increase C/EBPδ degradation by the proteasome. Instead, the leucine zipper stabilizes the C/EBPδ protein by forming homodimers that are poor substrates for proteasome degradation. To investigate the cellular conditions associated with C/EBPδ ubiquitination we treated G0 growth-arrested mammary epithelial cells with DNA-damageand oxidativestress-inducing agents and found that C/EBPδ ubiquitination is induced in response to H2O2. However, C/EBPδ protein stability is not influenced by H2O2 treatment. In conclusion, our results demonstrate that proteasome-mediated protein degradation of C/EBPδ is ubiquitin-independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithium stabilizes the CCAAT/enhancer-binding protein alpha (C/EBPalpha) through a glycogen synthase kinase 3 (GSK3)-independent pathway involving direct inhibition of proteasomal activity.

CCAAT/enhancer-binding protein alpha (C/EBPalpha), a basic leucine zipper transcription factor, is involved in mitotic growth arrest and differentiation. Given that numerous proteins involved in cell cycle regulation are degraded via the ubiquitin-proteasome system, we examined whether the C/EBPalpha protein is degraded via a proteasomal mechanism. In cycloheximide-treated BALB/MK2 keratinocyte...

متن کامل

Lithium Stabilizes the CCAAT/Enhancer-binding Protein (C/EBP ) through a Glycogen Synthase Kinase 3 (GSK3)-independent Pathway Involving Direct Inhibition of Proteasomal Activity*

CCAAT/enhancer-binding protein (C/EBP ), a basic leucine zipper transcription factor, is involved in mitotic growth arrest and differentiation. Given that numerous proteins involved in cell cycle regulation are degraded via the ubiquitin-proteasome system, we examined whether the C/EBP protein is degraded via a proteasomal mechanism. In cycloheximide-treated BALB/MK2 keratinocytes we found that...

متن کامل

Detrimental role for CCAAT/enhancer binding protein δ in blood-borne brain infection

BACKGROUND The most frequent pathogen that causes bacterial meningitis is the Gram-positive bacterium Streptococcus (S.) pneumoniae. CCAAT/enhancer binding protein δ is a transcription factor that has recently been hypothesized to play a detrimental role in outcome of meningitis caused by S. pneumoniae. Here, we studied the role of C/EBPδ prior to the development of pneumococcal meningitis. M...

متن کامل

CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner.

CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococc...

متن کامل

CCAAT enhancer binding protein δ plays an essential role in memory consolidation and reconsolidation.

A newly formed memory is temporarily fragile and becomes stable through a process known as consolidation. Stable memories may again become fragile if retrieved or reactivated, and undergo a process of reconsolidation to persist and strengthen. Both consolidation and reconsolidation require an initial phase of transcription and translation that lasts for several hours. The identification of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007